
Choosing the right architecture to support
web-based applications

A HOW-TO GUIDE TO
HYBRID HEADLESS CMS
AND DECOUPLED APPS

03
INTRODUCTION

TABLE OF CONTENTS

06
DEFINING
HYBRID CMS

19
BEST PRACTICES
WITH THE
DECOUPLED API

09
PLATFORM
CONSIDERATIONS

17
CHOOSING THE
RIGHT JAVASCRIPT
FRAMEWORK

13
FLEXIBILITY:
PARTIAL VS. FULL
DECOUPLING

22
CONCLUSION

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

2

INTRODUCTION
SECTION 01

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

3

For most of the 21st century, most
websites have been built with a
unified architecture. In this model, a
content management system (CMS)
manages both the front end and
the back end of a web application.
This has proven resilient for many
reasons: caching, security, web
application advancements and more.

Yet, the primary reason is
because of the need to provide
low-code tools and web-based
user interfaces (UIs) for non-
developers. These tools allow them
to control the experiences they are
responsible for. In fact, the rise of
low-code tools continues to grow
as more people need the ability to
manage web experiences. At the
same time, the rise in new interfaces
and application types has generated
a dizzying array of channels to
support. These digital channels
provide new challenges that often
require high-code solutions.

Often, the ideal solution is to
break the unified architecture into
one or more “decoupled” pieces.
This typically relies on the CMS

to manage the back-end data
and allows another application to
manage the front-end experience. In
other words, this is a headless CMS
back end paired with a decoupled
front end.

Forrester and Gartner highlighted
headless CMS and decoupled
architecture as an important
capability back in early 2016.
Recently, Gartner has modified their
advice to focus on a hybrid CMS that
is API-first, and not API-only. This
shows the increasing importance of
developing digital applications that
share a common platform as we
move further into the 21st century.

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

44

https://www.forrester.com/report/The-Rise-Of-The-Headless-Content-Management-System/RES132202
https://www.gartner.com/en/documents/3535917/digital-experience-platforms-need-to-feature-headless-co
https://www.gartner.com/en/documents/4002385/how-to-successfully-implement-api-first-integration

THE DECOUPLED EVOLUTION
Websites in the past were built from monolithic
architectures that deliver content through a
templating solution tightly coupled with the
CMS on the back end. Agile organizations
crave flexibility and strive to manage structured
content across different presentation layers.
Accomplishing this efficiently requires that teams
have flexibility in the front-end frameworks that
dominate the modern digital landscape.

That’s why decoupled and headless CMS have
taken off. That’s why you’re here. But now you
need the right technology to support the next
phase of the web and beyond.

DRUPAL: COUPLED VS. DECOUPLED

CMS
FRONT END

CMS

CONSUMER
APPLICATION

CMS

Server-side
language

Front-end
code

Templates

Data

Web services

Other
language

Server-side
language

Front-end
code

Templates

Data

JSON

DECOUPLEDUNIFIED

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

5

DEFINING
HYBRID CMS

SECTION 02

6

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

So first thing’s first: what is
the difference between a
traditional CMS, headless
CMS and a hybrid CMS?

 Traditional CMS: Users create content
through an editor and store it in a database
(the back end). That content is then served
into a front-end rendering layer that is tightly
coupled to the back end.

 Headless CMS: Users create content
through an editor and store it in a
standalone database fronted by APIs. The
content is retrieved by an entirely separate
front-end rendering layer via those APIs.

 Hybrid CMS: Blends the traditional and
headless CMS. Users create content
through an editor and store it in a database.
The content can be served flexibly either
through the existing front-end rendering
layer or retrieved by an entirely separate
front-end rendering layer via APIs.

Brochure
-ware site

CommerceMarketing
site

Mobile
app

Voice app
Other

systems

Hybrid
decoupled

app

Single
page app

Micro
front end

Progressive
web

application

HYBRID CMS

Low-code
assembly tools

API content
(headless)

Smart TV

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

7

In all cases, front-end templates define how
content is displayed in the digital application.
What is changing is the landscape of languages
and frameworks available to the task. In order
to meet business (and consumer) demand for a
consistent experience across channels, teams
need to have expertise across multiple front-end
frameworks, and in the last several years that list
has changed.

Popular languages for traditional website
development include PHP, .NET and Java.
However, the popularity of Node.js as an
application server has created an explosion
of activity. According to the 2020 Stack
Overflow survey, JavaScript is still the dominant
programming language for front-end web
development, and has been for years.

When considering a traditional CMS architecture
versus headless or decoupled architecture, it
is important to understand the use cases best
suited to the architecture. For example, the
majority of projects that use JavaScript front-end
frameworks on Node.js web servers typically lean
on the inherent strength of Node.js: real-time or
asynchronous functionality. Use cases usually
revolve around the ability to maintain single
threading in a non-blocking way. A common

example would be a React app, which would use
a combination of multiple views or API endpoints
without the need for a page refresh.

Other common examples of this functionality
would include:

 Dynamic API Factory

 Real-time or data streaming

 Chatbots/chat clients

 Messaging over WebSockets

If your organization is evaluating a decoupled
architecture and you have any of the following
requirements, a decoupled architecture may
not be a great fit:

 Full-fledged editorial experience for your
content team

 Frequent needs to manipulate display and
layout

 End-to-end preview of the application prior
to launch

 Minimal developer resources needed
to maintain your digital application
infrastructure

This is why the default recommendation is to
use a hybrid CMS. A hybrid CMS is API-first, and
can be used for both headless and traditional
implementations. This means that a single toolset
can be used and reused for different projects
internally without needing to evaluate, purchase
and retrain on different solutions.

Drupal is an open source, API-first CMS and one
of the most powerful hybrid CMS solutions. API-
first is what really enables decoupling to happen
because the application “phones home” to the
CMS to retrieve content. Content can sit in one
place and then be distributed outward. Instead of
having a siloed system for a website, you have a
hub and spoke model. The hybrid CMS is the hub
and the spokes are single page apps, smart TVs
and even other back ends for other apps.

This also means that Drupal will allow you start
with traditional and “add on” headless capabilities,
or vice versa. The flexibility gives your team
choices without sacrificing security, performance
or development speed.

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

8

https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020

PLATFORM
CONSIDERATIONS

SECTION 03

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

9

Digital platform teams require
a system that will help them
support web, mobile web, mobile
apps, chatbots, voice-activated
applications and more. Options
to support these channels are
split among the technology
approaches above. Traditional
CMSes, like Adobe, Sitecore,
Episerver or Joomla, are best suited
to monolithic architecture. There
are a number of newer, API-only
(headless) CMS systems gaining
traction like Built.io, Contentful and
Prismic.io. And finally, there are
API-first options, like Drupal, that
are able to deliver on the promise
of decoupled architectures. The
challenge is determining the right
option for not only your current use
cases, but for your organization’s
strategy roadmap.

The decision is driven by the
changing digital landscape.
Chatbots, voice-enabled apps
and augmented reality are poised
to become very popular. The
question is how this will impact the
way your organization addresses
your participation in the growing
digital landscape.

Will you choose to build everything
from scratch and carry not only
the maintenance burden but also a
radically slower velocity? Or will you
choose off-the-shelf point solutions
that are not exactly what you need
and you will struggle to evolve with
them? The ideal platform is one that
allows you to compose your specific
solutions from a library of reusable
components and services, while still
being able to adjust and customize
as needed. This balance of speed,
governance and flexibility is the
key to success in the modern
digital space.

By choosing a reliable hybrid CMS,
you can not only support multiple
use cases with a single toolset, but
you can also allow teams to work
on related projects without getting
in each other’s way. The digital
marketing team can use the low-
code tools to build and modify the
main website while your mobile
application team can tap into the
same content via the API. Hybrid
enables you to build differently, so
that the silos of web and mobile are
broken down and you can support a
unified digital apps team.

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

1010

Once this is accomplished, the team can organize
around content structure versus presentation. This
can quickly result in freeing front-end developers
from back-end obstacles.

With a common toolset in place and bottlenecks
addressed, teams can now employ continuous
development methodology. Continuous
development automates the build, integration,
test and deployment stages of application
development. This allows development teams to
deliver new applications and features to users
faster and more efficiently. In a hybrid website
or application development, this approach
gives both front-end and back-end teams the
independence to develop structured content
models and modern presentations that best meet
the objectives of the project.

In order to reap the advantages of the
architecture, you need a platform that is designed
to support these use cases. With continuous
development, teams benefit from a common
development toolset to aid in communication.
Support for application hosting for the front
end and back end on a single platform will aid
you through the consolidation of infrastructure
suppliers and a single support structure and SLA.

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

11

In order to deliver a complete omnichannel
digital experience, your platform must either
easily integrate with or include:

 Front-end framework (e.g., Node.js)

 CMS (e.g., Drupal)

 Cloud-based development tools

 Personalized content delivery

 Customer journey orchestration

 System integration (e-commerce,
marketing automation)

 A robust API-first approach

 Support for application and infrastructure
from a world class team

The benefits of creating decoupled applications
with JavaScript on a single platform are common
development tools and a common UI for your
teams to use. If you’re using some sort of build
and test automation, they can both be using
the same tools. Teams are able to work more
efficiently by sharing unified management
consoles and developer tools.

12

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

FLEXIBILITY:
PARTIAL VS. FULL
DECOUPLING

SECTION 04

13

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

For some projects, you choose a full-stack, or
unified, Drupal application as the primary solution.
In a traditional model, the entire front end is
managed by the back-end server. However,
there is growing interest in more interactive
technologies for your site or the additional digital
channels available. A partial decoupling approach
can use JavaScript components to display
specific interactive components in the browser,
but maintains cacheable content and additional
workflows within the Drupal back end.

Partial decoupling mitigates many of the
limitations of a fully decoupled architecture by
leveraging low-code tools for managing the
presentation layer and inserting decoupled
components where they are needed. This allows
the team to compose experiences from a library
of reusable components and deliver results
without needing to deploy code. Low-code
assembly empowers the non-developer to safely
and reliably manage experiences using self-serve
tools in the back end.

Full decoupling puts more power into the hands
of the developer and, if deployed properly across
a broader team, can lead to a more effective and
efficient development workflow. The CMS is put
into a fully headless mode and is only used for
creating and managing content and data for the
decoupled front-end application to consume.

Mobile
app

Voice app
Other

systems

Hybrid
decoupled

app

Single
page app

Micro
front end

Progressive
web

application

Smart TV

WebsiteBrochure
-ware site

CommerceMarketing
site

HYBRID CMS

Low-code
assembly tools

API content
(headless)

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

14

PARTIAL DECOUPLING

Partial decoupling combines the
benefits of traditional Drupal
applications with the benefits
of front-end frameworks using
decoupled JavaScript components
that are assembled with Drupal in
combination with standard CMS
content. Using the Component
module, JavaScript developers
can easily add their components
without needing to know any PHP
or Drupal specifics. They simply
need to create a formatted YAML
file with the component data and
Drupal will auto-discover and
load the component with all of
its dependencies.

Once it is discovered by the CMS,
the content creator can easily use
the decoupled component like
any other piece of content, and
the visual page builder will let
them compose or assemble the
content with a simple drag-and-
drop interface. This is a great way to
decouple parts of the experience as
opposed to all of it.

Partial decoupling enables teams to:

 Rely on Drupal to render
and deliver the Skeleton
boilerplate and dynamic
sections of the page

 Decouple the components
of the page that need to be
dynamic or uncached

 Leverage the BigPipe Drupal
module to speed up page
loads while decoupled
and dynamic components
populate asynchronously

 Offload some front-end
rendering to reduce server
resource usage to allow
pages to load faster

 Optimize API requests to
arrive at smaller, lightweight
requests

 Use and contribute to a
shared library of JavaScript
components

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

1515

http://getskeleton.com/
http://getskeleton.com/
https://www.drupal.org/project/big_pipe

FULL DECOUPLING

Full decoupling is what we think of
when we envision a React or other
JavaScript application. This is a way
of moving much of the experience
management responsibility to the
developer team. In some cases,
this can make it easier to manage
multichannel communications and
in other cases, it can be the only
viable way to view the content (like
on a smart device).

In order to balance the infinite
level of variation across completely
custom applications, it is important
to outline the toolset that will be
used for building and managing
all decoupled applications.
Consideration needs to be given to
the possibility of needing to support
one or more native applications
along with web applications.

Most major JavaScript frameworks
will work for the average use case,
but you should also look at what
your developers are comfortable
with and how the different tools are

evolving and growing. Ideally, you
should be opting for multipurpose
tools and standard architectures
that are as simple as possible. You
want to remove complexity where
you can and provide a standardized
method for the entire team to use
for application development.

Decoupled apps bring together
the best of the old web (pre-
smartphone) and the best of what
the current web has to offer now
and in the future. But all these shiny
new things need to be developed
in a way that lets them connect.
Looking at how to build decoupled
applications, one thing has become
clear: you need JavaScript.
JavaScript and its frameworks, like
Angular, React and Vue, have been
ranked by StackOverflow as the
most popular scripting language
since 2013 in a survey of over
50,000 developers.

16

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

16

CHOOSING THE
RIGHT JAVASCRIPT
FRAMEWORK

SECTION 05

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

17

There are many JavaScript frameworks to choose
from. There’s React, one of the most popular
frameworks that’s been added to Drupal core.
There’s Express.js. There’s Vue. There’s Svelte.
There’s Angular. The challenge with JavaScript
from a developer’s standpoint is it’s kind of a wild,
wild west. The choice of framework rests on use
case and developer preference.

However, if using Drupal, then it makes sense
to look at the existing frameworks that have
supported integration patterns and strong sample
code. For example, the Contenta distribution
has several sample decoupled applications to
work with, and the Next.js integration offers an
optimized integration that provides a real-time
preview of the decoupled application.

Some resources to consider:

 Acquia CMS

 Drupal State JavaScript SDK

 Drupal Next.js for React

 Drupal Tome - static site generator

 Drupal Gatsby

 Component module

 Decoupled Pages module

 Decoupled Kit module

 All decoupled-related modules

For teams that have made the choice to go with
the decoupled architecture for a specific solution,
the typical question is what to do about the
decoupled application. When they’re running
the front end on a completely different stack,
in this case a JavaScript stack that includes
Node.js as the runtime, those people have to
set up their stack that supports the CMS. Then,
they go somewhere else, like Google Cloud or
Amazon Web Services, and they set up this
front-end runtime to run over there.

When Acquia launched our Node.js support
back in September of 2017, we took a lot of the
complexity out for our customers because now
they’ve got one UI to run both the front- and back-
end stack. We designed our support for Node.js
around delivering the optimal stack configuration

for developing decoupled applications. Rather
than building a complete Node.js stack and a
LAMP stack, decoupled applications on Acquia
Cloud Platform are supported by a full LAMP stack
and the Node.js runtime all on a single platform.

This combination of support for a truly hybrid
CMS along with decoupled application support
makes the Acquia platform a powerful tool that
you can use to create traditional, headless,
decoupled, static and low-code applications,
all on the same platform.

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

18

https://www.drupal.org/project/acquia_cms
https://drupal-state.netlify.app/en/introduction/
https://next-drupal.org/
https://tome.fyi/
https://www.drupal.org/project/gatsby
https://www.drupal.org/project/component
https://www.drupal.org/project/decoupled_pages
https://www.drupal.org/project/decoupled_kit
https://www.drupal.org/project/project_module?f%5B0%5D=im_vid_44%3A13028&f%5B1%5D=&f%5B2%5D=im_vid_3%3A186018&f%5B3%5D=sm_core_compatibility%3A9&f%5B4%5D=sm_field_project_type%3Afull&f%5B5%5D=&f%5B6%5D=&text=&solrsort=iss_project_release_usage+desc&op=Search

BEST PRACTICES
WITH DECOUPLED
API: ACQUIA
ENGAGE

SECTION 06

19

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

In October 2017, just as Acquia was
releasing support for Node.js on
Acquia Cloud, we acquired a new
customer: ourselves.

Acquia was facing the same situation
that many of our customers face on
a regular basis: a requirement for a
digital experience tied to an event.
In Acquia’s case, it was building a
decoupled application for our annual
conference, Acquia Engage.

The first step in a successful
decoupled project is aligning on
requirements. In the case of Acquia
Engage, they were as follows:

 Provide real-time updates with
presentations and speaker
information

 Showcase information about
Engage Awards finalists by
category

 Showcase other types
of content related to the
conference

 Integrate content from
standard APIs, such as JSON,
into the application

 Work responsively on multiple
devices and screen sizes

Once all the requirements were set,
the next step was to understand the
decoupled Drupal workflow. To do
this effectively, Acquia:

 Used development to help
contrast assumptions around
level of effort based on tasks

 Standardized workflow
along with deployment
requirements when building
two applications that work
in parity

 Streamlined communications
around potential issues
and understood how to
troubleshoot issues with the
build based on the technical
level of the audience

The Acquia Engage application
was built in JavaScript to execute
on a Node.js runtime environment
in Acquia Cloud. It was important
to test any limitations or technical
opinions of Acquia Cloud’s Node.js
hosting before getting started.

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

2020

This included documenting implications of how a
Node platform built for decoupled Drupal is different
from a standalone Node hosting offering. Acquia
also had to adjust the application based on
requirements of automating a deployment cycle
based on Acquia pipelines.

Once limitations and technical options were
established, a content workflow was enabled for the
non-technical content authors who would be working
with and updating the content within the Acquia
Engage app. To maximize efficiency, the marketing
team needed the ability to manage the content with a
standard CMS-managed workflow and provide real-
time updates without the need for code deployment.
In addition, the marketing team needed authorization
to upload media assets based on type of content. To
meet these requirements, Acquia needed to allow for
customizations integrated with Drupal that carried over
to the JavaScript application.

Results:

 Successfully supported ~250 users per day
during conference

 Cut development time by 30%

 Node.js processes allowed for real-time data
to be presented to Acquia Engage attendees
through the Engage App

 Editor workflow increased by 35% during
conference updates

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

21

CONCLUSION
SECTION 07

22

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

Decoupled architectures are
foundational to the direction
digital teams are taking applications
into the 21st century. In fact,
Forrester stated: “the microservices
approach is the future of digital
experience architectures.” Despite
that, moving to this pattern requires
thoughtful decision.

Understand your use cases or
digital applications and make
sure you are aligning to the best
architecture to meet your needs.
If your priorities include a heavy
reliance on delivery of content over
API, real-time data or omnichannel
support, decoupled Drupal
should be seriously considered.
If your objective is a blazing fast
experience for the web or other
digital application, leveraging
Drupal as a service to a Node.js
runtime makes it easy to deliver
an amazing front-end experience.

Despite the seemingly endless
benefits, ensure you weigh the
tradeoffs of managing a decoupled
stack. Ensure your partners and/
or internal teams can deliver the
support needed to keep your
applications running optimally.
Make sure your team is ready
to build applications differently.
Decoupled can introduce new
development tools, languages
and approaches. Make sure your
teams are prepared for the coming
changes. Lastly, make sure you
evaluate your platform approach
based on the support of both your
front-end and back-end teams. H

Y
B

R
ID

 H
E

A
D

L
E

S
S

 C
M

S
 A

N
D

 D
E

C
O

U
P

L
E

D
 A

P
P

S

2323

https://www.forrester.com/report/The-Rise-Of-The-Headless-Content-Management-System/RES132202

LEARN MORE

Now that you’ve learned how to choose the right architecture
for your current and future applications, find out how Acquia
CMS can support whichever approach you take.

TAKE THE
NEXT STEP

24

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

24

https://www.acquia.com/products/drupal-cloud/acquia-cms

ABOUT ACQUIA
Acquia is the open digital experience platform that
enables organizations to build, host, analyze and
communicate with their customers at scale through
websites and digital applications. As the trusted open
source leader, we use adaptive intelligence to produce
better business outcomes for CX leaders.

ACQUIA.COM

25

H
Y

B
R

ID
 H

E
A

D
L

E
S

S
 C

M
S

 A
N

D
 D

E
C

O
U

P
L

E
D

 A
P

P
S

25

https://www.facebook.com/acquia/
https://twitter.com/acquia?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.youtube.com/user/AcquiaTV
https://www.linkedin.com/company/acquia/
https://www.acquia.com/

	Button 67:
	Page 2:
	Page 4:
	Page 5:
	Page 7:
	Page 8:
	Page 10:
	Page 11:
	Page 14:
	Page 15:
	Page 18:
	Page 20:
	Page 21:
	Page 23:

	Button 68:
	Page 2:
	Page 4:
	Page 5:
	Page 7:
	Page 8:
	Page 10:
	Page 11:
	Page 14:
	Page 18:
	Page 21:

	Button 71:
	Page 3:
	Page 6:
	Page 12:
	Page 13:
	Page 16:
	Page 19:
	Page 22:
	Page 24:

	Button 72:
	Page 3:
	Page 6:
	Page 9:
	Page 12:
	Page 13:
	Page 16:
	Page 19:
	Page 22:
	Page 24:

	Button 1013:
	Button 1016:
	Button 1012:
	Button 151:
	Button 152:
	Button 1014:
	Button 148:
	Button 121:
	Button 119:
	Button 155:
	Button 1015:
	Button 156:
	Button 1017:
	Button 138:
	Button 137:
	Button 154:

